EXPERIMENTAL DOUBLE-DIFFERENTIAL LIGHT-ION PRODUCTION CROSS SECTIONS FOR SILICON AT 95 MEV NEUTRONS

Udomrat Tippawan¹, Stephan Pomp¹, Ayse Atac¹, Bel Bergenwall¹, Jan Blomgren¹, Angelica Hildebrand¹, Cecilia Johansson¹, Joakim Klug¹, Philippe Mermod¹, Michael Österlund¹, Klas Elmgren², Nils Olsson², Olle Jonsson³, Alexander Prokofiev³, Leif Nilsson¹, Pawel Nadel-Turonski⁴, Somsak Dangtip⁵, Valentin Corcalciuc⁶, Yukinobu Watanabe⁷, Arjan Koning⁸

- ¹ Department of neutron research, Uppsala university
- ² Swedish Defence Research Agency
- ³ The Svedberg Laboratory, Uppsala university
- ⁴ Department of radiation sciences, Uppsala university
- ⁵ Department of physics, Chiang Mai university
- ⁶ Institute of Atomic Physics, Bucharest, Romania
- ⁷ Department of Advanced Energy Engineering Science, Kyushu university
- ⁸ Nuclear research and Consultancy group, Petten, the Netherlands

The radiation effects induced by terrestrial cosmic rays in microelectronics, on board aircrafts as well as at sea level, have recently attracted much attention. The most important particle radiation is due to spallation neutrons, created in the atmosphere by cosmic-ray protons. When, e.g., an electronic memory circuit is exposed to neutron radiation, charged particles can be produced in a nuclear reaction. The charge released by ionization can cause a flip of the memory content in a bit, which is called a single-event upset (SEU). This induces no hardware damage to the circuit, but unwanted re-programming of memories, CPUs, etc., can have consequences for the reliability, and ultimately also for the safety of the system.

Data on energy and angular distribution of the secondary particles produced from neutronsilicon nuclei are essential input for analyses and calculation of SEU rate. In this work, double-differential cross sections of inclusive light-ion (p, d, t, 3 He and α) production in silicon, induced by 95 MeV neutrons, are presented. Angular distributions are measured at eight laboratory angles from 20° to 160° in steps of 20° . Deduced energy-differential, angle-differential and total cross sections are reported as well. Experimental cross sections are compared to theoretical reaction model calculations and existing experimental data in the literature.

Email: udomrat.tippawan@tsl.uu.se